Cannabinoid-mediated disinhibition and working memory: dynamical interplay of multiple feedback mechanisms in a continuous attractor model of prefrontal cortex.

نویسندگان

  • Eugene Carter
  • Xiao-Jing Wang
چکیده

Recurrent excitation is believed to underlie persistent neural activity observed in the prefrontal cortex and elsewhere during working memory. However, other positive and negative feedback mechanisms, operating on disparate timescales, may also play significant roles in determining the behavior of a working memory circuit. In this study, we examined dynamical interactions of multiple feedback mechanisms in a biophysically based neural model of spatial working memory. In such continuous attractor networks, a self-sustained activity pattern tends to drift randomly, resulting in a decreased accuracy of memory over time. Moreover, attractor states become unstable when spike-frequency adaptation reduces the excitability of persistently firing pyramidal neurons. Here, we show that a slow activity-dependent local disinhibition, namely cannabinoid-dependent depolarization-induced suppression of inhibition (DSI), can counteract these destabilizing effects, rendering working memory function more robust. In addition, the slow DSI effect gives rise to trial-to-trial correlations of memory-guided behavioral responses. On the other hand, computer simulations revealed that a global cannabinoid agonist (mimicking the effect of drug intake) yields the opposite effect. Thus, this work suggests a circuit scenario according to which endogenous DSI is beneficial for, whereas an exogenous drug such as marijuana is detrimental to, working memory and possibly other prefrontal functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of systemic and intra-prefrontal cortex administrations of ethanol on spatial working memory in male rats

Introduction: Ethanol can induce a wide spectrum of neurophysiological effects via interaction with multiple neurotransmitter systems and disruption of the balances between inhibitory and excitatory neurotransmitters. Prefrontal cortex is involved in cognitive process including working memory and is sensitive to ethanol. Present study investigates the effects of intraperitoneal (i.p.) admini...

متن کامل

Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex

The prefrontal cortex (PFC) plays a crucial role in flexible cognitive behavior by representing task relevant information with its working memory. The working memory with sustained neural activity is described as a neural dynamical system composed of multiple attractors, each attractor of which corresponds to an active state of a cell assembly, representing a fragment of information. Recent stu...

متن کامل

prelimbic of medial prefrontal cortex GABA modulation through testosterone on spatial learning and memory

Prefrontal cortex (PFC) is involved in multiple functions including attentional , spatial orientation, short and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of test...

متن کامل

prelimbic of medial prefrontal cortex GABA modulation through testosterone on spatial learning and memory

Prefrontal cortex (PFC) is involved in multiple functions including attentional , spatial orientation, short and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of test...

متن کامل

Neuromorphic Implementation of Attractor Dynamics in a Two-Variable Winner-Take-All Circuit with NMDARs: A Simulation Study

Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 17 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2007